BT-4/M-20
 34013

 DIGITAL ELECTRONICS

 DIGITAL ELECTRONICS
 EEcT-202E

 Option I

 Option I}

Time : Three Hours]
[Maximum Marks : 100
Note : Attempt Five questions in all, selecting at least one question from each Unit.

Unit I

1. (a) Describe De Morgan's theorems and simplify the given Boolean expression :

$$
\mathrm{Y}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\overline{(\overline{\mathrm{A}}+\mathrm{C}) \cdot(\mathrm{B}+\overline{\mathrm{D}})}
$$

(b) Convert the following numbers :
(i) $\quad(86.421)_{8}=(?)_{2}$
(ii) $\quad(\mathrm{B} 45.251)_{16}=(?)_{10}$
(iii) $(412.456)_{10}=(?)_{16}$
(iv) $(41.785)_{16}=(?)_{2}$
(v) $\quad(682.231)_{8}=(?)_{10}$
2. (a) Minimize the following expressions using K-Map and realize it using NOR gate only :
$f(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma m(0,1,3,4,5,7,10,13,14,15)$
(b) Describe 1's Complement and 2's Complement method and solve the following using these methods :
(i) $64-32$
(ii) $-48-25$.

Unit II

3. (a) Explain the characteristics of ECL family in detail.10
(b) Explain the operation of CMOS NOR gate. $\mathbf{1 0}$
4. (a) Describe operation of TTL with Totem Pole output in detail.

10
(b) Write a technical note on MOS logic families. 10

Unit III

5. (a) Design full subtractor using half subtractors. 10
(b) Describe Asynchronous Counter. 5
(c) Write a technical note on parity generator and checker.
6. (a) Explain Multiplexer, Demultiplexer and Comparator with Schematic diagrams.
(b) Draw a neat circuit diagram of clocked J-K flipflop using NAND gates. 5
(3)L-34013

Unit IV

7. (a) Explain the basic concept of Successive approximation and counter method. $\mathbf{1 0}$
(b) Explain specification and parallel-comparator of A/D converter. $\mathbf{1 0}$
8. Write short notes on any four of the following : $\mathbf{5} \times \mathbf{4}$
(a) D/A Converter
(b) Sample and Hold Circuit
(c) Schmitt Trigger
(d) RAM \& ROM
(e) State Transition Diagram.
