Roll No.
Total Pages : 03

BT-4/M-20
 34104
 DIGITAL ELECTRONICS EE-202N

Time : Three Hours]
[Maximum Marks : 75
Note : Attempt Five questions in all, selecting at least one question from each Unit.

Unit I

1. (a) What are BCD code and Excess-3 code ? What are the rules for BCD and Excess 3 code additions ? Explain with suitable examples. 8
(b) Explain the rules of 1's complement and 2's complements addition and subtraction with suitable examples.7
2. (a) Explain different types of Logic gates and their truth tables. 8
(b) Describe De Morgan's theorems and simplify the given Boolean expression :

$$
\mathrm{Y}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\overline{(\overline{\mathrm{A}}+\mathrm{C}) \cdot(\mathrm{B}+\overline{\mathrm{D}})}
$$

Unit II

3. Minimize the following expressions using K-Map and realize its using NOR gate only : 15 $f(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma m(0,1,3,4,5,7,10,13,14,15)$
4. Explain half subtractor and full subtractor and design full subtractor using half subtractor. 15

Unit III

5. (a) Explain D / A and A / D converter with Schematic diagrams. 8
(b) Describe Successive Approximation Method in detail.7
6. (a) Explain, how a J-K flip-flop flow is converted in to D flip flop and T flip-flop.

8
(b) Draw a neat circuit diagram of clocked J-K flipflop using NAND gates. Give its truth table and explain race around condition.

7

Unit IV

7. (a) Explain the characteristics of ECL family in detail. 8
(b) Explain the operation of CMOS NOR gate. 7
(3)L-34104
8. Write short notes on any three of the following : $\mathbf{5} \times \mathbf{3}$
(a) ROM
(b) PAL
(c) FPGA
(d) CPLDS.
