Roll No.

Total Pages : 03

BT-7/M-20 37003 STATISTICAL MODELS FOR COMPUTER SCIENCE CSE-405

Time : Three Hours]

[Maximum Marks : 100

Note : Attempt *Five* questions in all, selecting at least *one* question from each Unit. Each question carries equal marks.

Unit I

- (a) A certain firm has plants A, B and C producing, respectively, 35 percent, 15 percent and 50 percent of the total output. The probabilities of a non-defective product are, respectively, 0.75, 0.95 and 0.85. A customer receives a defective product. What is the probability that it came from plant C ? 10
 (b) State and prove Bayes' theorem. 10
- 2. (a) Out of every 100 jobs received at a computing center, 50 are of class 1, 30 of class 2, and 20 of class 3. A sample of 30 jobs is taken with replacement. Find the probability that the sample will contain ten jobs of each class.

(3)L-37003

1

(b) State and prove addition theorem of probability. 10

Unit II

3. (a) Let y_1, y_2, \dots, y_r be mutually independent discrete random variables. If y_i has Poisson distribution with

parameter α_i , then $\sum_{i=1}^r y_i$ has a Poisson distribution

with parameter
$$\sum_{i=1}^{r} \alpha_i$$
. Prove. 10

(b) The time (measured in years), X required to complete a software project has a p.d.f. of the form :

$$f(x) = \begin{cases} Kx(1-x), & 0 \le x \le 1\\ 0, & \text{otherwise} \end{cases}$$

Find the value of K.

10

- 4. (a) Explain Markov property of exponential distribution. 10
 - (b) State and prove the linearity property of Expectation i.e.

$$E[Z] = E[X + Y] = E[X] + E[Y]$$
 where $Z = x + y$.
10

(3)L-37003

Unit III

5.	Define the term stochastic process. Explain the	
	classification of stochastic processes. 20	
6.	Explain the concept of the following :	
	(a) Superposition of Independent Poisson process	
	(b) Decomposition of Independent Poisson process. 20	
	Unit IV	
-		
7.	Explain $M/G/1$ queuing system. 20	
8.	Explain the following :	
	(a) The Pure death process	

(b) Machine repairman model. 20

3