## BT-7/M-20

37003

## STATISTICAL MODELS FOR <br> COMPUTER SCIENCE <br> CSE-405

Time : Three Hours]
[Maximum Marks : 100
Note : Attempt Five questions in all, selecting at least one question from each Unit. Each question carries equal marks.

## Unit I

1. (a) A certain firm has plants $\mathrm{A}, \mathrm{B}$ and C producing, respectively, 35 percent, 15 percent and 50 percent of the total output. The probabilities of a nondefective product are, respectively, $0.75,0.95$ and 0.85 . A customer receives a defective product. What is the probability that it came from plant C ? $\mathbf{1 0}$
(b) State and prove Bayes' theorem. $\mathbf{1 0}$
2. (a) Out of every 100 jobs received at a computing center, 50 are of class 1,30 of class 2 , and 20 of class 3. A sample of 30 jobs is taken with replacement. Find the probability that the sample will contain ten jobs of each class. 10
(b) State and prove addition theorem of probability.

## Unit II

3. (a) Let $y_{1}, y_{2}, \ldots \ldots . . y_{r}$ be mutually independent discrete random variables. If $y_{i}$ has Poisson distribution with parameter $\alpha_{i}$, then $\sum_{i=1}^{r} y_{i}$ has a Poisson distribution with parameter $\sum_{i=1}^{r} \alpha_{i}$. Prove. 10
(b) The time (measured in years), X required to complete a software project has a p.d.f. of the form :

$$
f(x)= \begin{cases}\mathrm{K} x(1-x), & 0 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Find the value of K .
4. (a) Explain Markov property of exponential distribution. 10
(b) State and prove the linearity property of Expectation i.e.
$\mathrm{E}[\mathrm{Z}]=\mathrm{E}[\mathrm{X}+\mathrm{Y}]=\mathrm{E}[\mathrm{X}]+\mathrm{E}[\mathrm{Y}]$ where $\mathrm{Z}=x+y$.

## Unit III

5. Define the term stochastic process. Explain the classification of stochastic processes. 20
6. Explain the concept of the following :
(a) Superposition of Independent Poisson process
(b) Decomposition of Independent Poisson process. 20

## Unit IV

7. Explain $\mathrm{M} / \mathrm{G} / 1$ queuing system.
8. Explain the following :
(a) The Pure death process
(b) Machine repairman model.
