Roll No.

BT-8/M-20

38052

OPERATIONS RESEARCH

Paper-ME-406E

Time Allowed : 3 Hours] [Maximum Marks : 100

Note : Attempt **five** questions in all, selecting at least **one** question from each Unit.

UNIT-I

- A firm manufactures pain relieving pills in two sizes

 A and B. Size A contains 4 grains of element X,
 7 grains of element Y and 2 grains of element Z.
 Size B contains 2 grains of element X, 10 grains of
 element Y and 8 grains of element Z. It is found by
 users that it requires at least 12 grains of element
 X, 74 grains of element Y and 24 grains of element
 Z to provide immediate relief. It is required to
 determine the least number of pills a patient should
 take to get immediate relief. Formulate the problem
 as Standard linear programming problem.
- 2. Compute the optimal solutions to the L.P. problem : 20

Maximize : Z = $2x_1 - 4x_2 + 5x_3 - 6x_4$ Subject to the constraints : $x_1 + 4x_2 - 2x_3 + 8x_4 \le 2$

 $-x_1+2x_2+3x_3-4x_4 \leq \! 1$

 $x_1, x_2, x_3, x_4 \ge 0.$

38052/K/509

P. T. O.

UNIT-II

3.	Find	the	Optimal	soluti	on to th	ne Trar	nsportation
	prob	lem	in wh	ich t	he cel	l cont	tains the
	trans	porta	tion cos	st in R	upees :		20
		W1	W2	W3	W4	W5	Available
F1		7	6	4	5	9	40
F2		8	5	6	7	8	30
F3		6	8	9	6	5	20
F4		5	7	7	8	6	10
Req	uired	30	30	15	20	5	100

4. Given below is the information of a project :

Activity Immediate Time (days) Predecessor

А	_	3
В	_	4
С	_	2
D	A,B	5
Ε	В	1
F	В	3
G	F,C	6
Н	В	4

38052/K/509

2

Activity	Immediate	Time (days)
	Predecessor	
Ι	E,H	4
J	E,H	2
Κ	C,D,F,J	1
L	К	5

Draw the network and find the Critical path. 20

UNIT-III

- 5. (a) What is the need of Simulation ? How you can use Monte Carlo simulation for the Industrial applications ? Give examples. 10
 - (b) Ten villages contain 500, 420, 690, 810, 230, 140, 1064, 290, 385 and 680 fields respectively. Make a random selection of 6 fields using Random numbers table.
 10
- 6. A decision problem has been expressed in the following Payoff table : 20

	Outcomes		
Action	Ι	II	III
А	10	20	26
В	30	30	60
С	40	30	20

(a) What is the minimum payoff action ?

(b) What is the minimum opportunity loss action ?

38052/K/509

UNIT-IV

7. Goods trucks arrive randomly at a stockyard with a mean of 8 trucks/hour. A crew of four operatives can unload a truck in 6 minutes. Trucks waiting in queue to be unloaded are paid a waiting charge at the rate of Rs. 60/hour. Operatives are paid a wage rate of Rs. 20/hour. It is possible to augment the crew strength to 2 or 3 (of four operatives per crew) when the unloading time will be 4 minutes o r

3 minutes respectively per truck. Find the optimal crew size. 20

8. Find the Optimal strategies of X and Y and the value of the game : 20

		Y	
	-6	10	11
Х	-1	-2	-3
	-1	-2	-4