	B. Tech (EEE 5th Semester): Power Quality & Management (EEN-301N)			
Lect. No.	Topics to be Covered	Proposed Lect. Date	Remarks	
1	Overview and Definitions of power quality			
	Overview and Definitions of power quality			
3	Overview and Definitions of power quality			
4	Overview and Definitions of power quality			
5	sources of pollution			
	sources of pollution			
7	sources of pollution			
8	international power quality standards and regulations			
9	international power quality standards and regulations			
10	international power quality standards and regulations			
		HAPTER 2		
	Surges			
	swell			
	voltage sag			
	over voltage under voltage			
	outage voltage phase angle imbalance			
16	electric noise			
17	harmonics,			
	frequency deviation monitoring			
	frequency deviation monitoring			
20	frequency deviation monitoring			
		HAPTER 3		
	Harmonic analysis			
	harmonic sources – the static converters			
23	transformer magnetization			
24	non-linear machines are furnaces,			
	non-linear machines are furnaces,			
	fluorescent lighting.			
	Harmonic effect within the power system,			
	Harmonic effect within the power system,			
29	interference with communication harmonic measurements			

30	interference with communication harmonic measurements	
	CHAPTER 4	
	Design, measure to minimize the frequency	
32	Design, measure to minimize the frequency	
33	duration of outages in distribution systems voltage regulators	
34	harmonic filters	
35	power conditioners,	
	uninterruptible power suppliers	
37	emergency and stand by power systems	
	application of power conditioners	
39	Power distribution systems design,	
40	measure to minimize voltage disturbances	

	B. Tech (EEE 5th	Semester): VLSI Design (EEN-3	(OON)
Lect.	Topics to be Covered	Proposed Proposed	Remarks
No.		Lect. Date	
1	Monolithic Silicon Fabrication Technology		
2	Monolithic Silicon Fabrication Technology		
3	Crystal Growth		
4	Crystal Growth		
5	Vapour phase (CVDT Technique)		
6	molecular beam epitaxy		
7	dry etching		
8	dry etching		
9	wet Etching.		
10	wet Etching.		
		CHAPTER 2	
11	Oxide properties		
12	diffusion Fick's law		
13	dopant sources, Oxidation process		
14	Diffusion mechanism, oxidation kinetics		
15	Constant source & limited source diffusion		
16	Constant source & limited source diffusion		

17	Characterization of diffused layers, .	
18		
19	Introduction to ion implantation	
20	Introduction to ion implantation	
		CHAPTER 3
21	Choice of metals,	
	Vacuum evaporation	
23	Sputtering Metalization problems,	
24	Lithography: Introduction to Photo,	
25	X-ray	
26	X-ray	
27	electron beam lithography process,	
28	electron beam lithography process,	
29	various printing techniques	
30	various printing techniques	
	CHAPTER 4	
	Fabrication process,	
	Sequence for a BJT,	
33	Sequence for a BJT,	
34	Capacitor,	
35	resistor	
36	IC	
37	Environment for IC fabrication,.	
	Environment for IC fabrication,.	
	Assembly & packaging techniques	
40	Assembly & packaging techniques	

	B. Tech (EEE 5th Semester): Power Electronics (EEN-305N)			
Lect. No.		Proposed Lect. Date	Remarks	
1	Characteristics of Diac			
2	Characteristics Triac and UJT.			

3	Do	
4	Protection of SCR against-over voltage, over current,	
5	Protection of SCR against dv/dt, di/dt,	
6	Do	
7	Heat sink design,	
8	Methods of commutation of SCR's	
9		
10	Series and Parallel operation of Thyristors.	
	СНАРТЕ	ER 2
	<u></u>	
	Classification of rectifiers,	
	principle of working of each along with control circuit	
13		
14	, J	
15	,,	
_	Ripple factors	
	utility factor and efficiency,	
	Effect of source and load inductance	
20	Dual converter.	
	СНАРТЕ	ER 3
	Classification of Cycloconverters,	
22	,	
23	$1 1 \mathcal{E} \mathcal{E}$	
24		
	J 1 &	
26	J 1 &	
27	\mathcal{J}	
28	presence of sub-harmonic in cycloconverter output.	
29	I J	
30	T T	
	CHAPTER 4	
31	Classification of inverters	

32	Classification of inverters,	
33	operation of each type,	
34	operation of each type,	
35	Analysis of VOTAGE Aand current,	
36	Analysis of VOTAGE Aand current,	
37	,current source inverter,	
38	voltage source inverter	
39	pulse width modulated inverter	
40	pulse width modulated inverter	

	B. Tech (EEE 5th Semester): Control System (EE-307N)		
		Duranana	Damada
Lect.	Topics to be Covered	Proposed	Remarks
No.		Lect. Date	
	Introduction to basic terms, classifications & types of Control		
1	Systems,		
2	block diagrams & signal flow graphs		
3	Mathematical Models of Physical System,		
4	Differential equation of physical systems & electrical		
4	systems with analogy.		
5	Transfer function,		
6	determination of transfer function using block diagram		
0	reduction techniques and Mason's Gain formula.		
7	Error detectors, Signal conditioners		
8	Modulators, Demodulators,		
9	Servo amplifiers voltage and power, Actuators including		
9	servomotors		
10	Techogenerators, Stepper motor		
	CH	APTER 2	
11	Time domain analysis,		
12	transient response of first & second order systems,		
13	transient response of first & second order systems,		

14	steady state error and static error constants in unity feedback
14	control systems,
15	steady state error and static error constants in unity feedback
15	control systems,
16	response with P,
17	PI
	PID controllers
	PID controllers
20	limitations of time domain analysis.
	CHAPTER 3
	Concept of stability,
22	graphic and numeric techniques of stability analysis,
	Routh Hurwitz,
	Nyquist, Bode plot
25	Root locii and polar plots
26	frequency domain specifications and performance of LTI
	systems,
27	Gain and phase margins,
28	Correlation with time domain performance closed loop
	frequency responses from open loop response
29	Correlation with time domain performance closed loop
	frequency responses from open loop response
30	Limitations of frequency domain analysis.
	CHAPTER 4
31	State space characteristics of control systems.
	Concepts of state variable,
	Concepts of state variable,
-	Transfer Function controllability and observability
35	Concepts of compensation,
_	Concepts of compensation,
37	, Concepts of compensation,
38	, Concepts of compensation,

39	Lag/Lead/Lag-Lead networks for compensation.		
	Lag/Lead/Lag-Lead networks for compensation.		
	B. Tech (EEE 5th Semester) : Power Transmission & Distribution		
	(EE-309N)		
Lect.	Topics to be Covered	Proposed	Remarks
No.		Lect. Date	
	Typical power system,		
1			
	Modern trends in power system transmission		
3	Underground and overhead system,		
4	Effects of increase in Voltage on transmission line efficiency		
5	Distribution of Power: General consideration,		
6	Radial and ring main system		
7	Different types of distributors;		
8	Relative copper consumption in various systems.		
9	Conductor size and Kelvin's Law,		
10	Tariffs and power factor improvement.		
	CH	IAPTER 2	
	skin effects		
	skin effects		
	Proximity effect,		
	Inductance of a single phase & two phase line		
15	Composite conductor lines,		
16	Three phase lines with symmetrical and unsymmetrical		
47	spacing,		
17	Bundled conductors		
18	Capacitance of two-wire line,		
19	three phase line with symmetrical and unsymmetrical spacing,		

20	Effect of earth capacitance.	
	CH	IAPTER 3
21	Short, medium and long lines – their representation,	
22	Performance calculation,	
	Performance calculation,	
24	Surge impedance Loading of transmission lines,	
25	, J	
26	Corona loss & radio interference	
27	Factors affecting corona , advantages and disadvantages of corona	
28	disruptive critical voltage, visual critical voltage, corona power loss,	
29	, methods of reducing corona effects, advantages & disadvantages of corona,	
30	interference of power lines with neighboring communication lines.	
	CHAPTER 4	
31	Cables for A.C & D.C systems,	
32	Insulation resistance and capacitance, capacitance measurement,	
33	cable loss, Power factor in cable	
34	Heating of cables Thermal characteristics,	
35	Use of inter sheaths, Capacitance grading.	
36	Mechanical Considerations Types of Insulators,	
37	Methods of equalizing voltage distribution,	
38	Line supports, various types of conductor material,	
	Sag calculations, Effect of wind,	
40	Ice and temperature on sag, Conditions at erection	

B. Tech (EEE 5th Semester):	Field & Waves (EEN-311N)	
-----------------------------	--------------------------	--

	Topics to be Covered	References	Remarks
Lect ureL	ropics to be covered	veierences	venigi k2
ect.			
No.			
1	Review of vector algebra		
2	the three orthogonal co-ordinate systems and their inter-relation		
3	review of vector calculus in all the three coordinate systems: Line,		
4	surface & volume integrals,gradient, divergence & curl of vector		
5	physical significance of divergence & curl of vector ,Divergence theorem		
6	stokes theorem,concept of soleniodal and irrotational fields.		
7	Gauss Law in electrostatics & its applications, uniform line		
8	surface & volume charge distributions, concept of electric field & electric potentials		
9	electric field & potential due to a linear dipole, Spherical & cylindrical capacitor		
10	energy density in electric field, method of images		
	CH	IAPTER 2	
11	Magnetostatics: Magnetic flux density and magnetizing field intensity		
12	Biot Savart's law, Amperes circuital law & its applications		
13	Magnetic vector potentials, Magnetic field energy		
14	boundary conditions for both the electric		
	magnetic fields at the interface of various types of media		
	Laplace, Poisson's equation & continuity equation		
	displacement current density, conduction current density		
	Maxwell's equation in differential & integral forms		
	time harmonic cases & their physical significance		
20	retarded potentials.		

	CHAPTER 3				
21	UPW: Plane waves & uniform plane waves and their properties				
22	wave equations in various media				
23	Polarization & its types				
24	intrinsic impedance, propagation constant				
25	reflection & refraction of uniform plane waves				
26	reflection & refraction of uniform plane waves at the interface of conductor				
27	dielectric & dielectric-dielectric (both normal and oblique incidence)				
28	•				
	skin depth & surface impedance				
30	Poynting vector theorem and its physical significance.				
	CHAPTER 4				
31	Transmission lines: Distributed parameters				
32	circuit parameters, concepts of voltage & current flow on a transmission line				
33	line equations, characteristics impedance				
34	Reflection of transmission line				
35	maxima & minima, standing wave ratio of a transmission line				
36	impedance matching, Smith's chart & its applications				
	co-axial type transmission line.				
38	Wave Guides: Brief idea of Wave Guides				
	types of Wave Guides				
40	TE, TM and TEM modes in rectangular wave guides.				

	B. Tech (EEE 7th Semester): Utilization of Electrical Energy (EE-401N*)						
Lect. No.		Proposed Lect. Date	Remarks				
1	Illumination: Term used in illumination,						

2	do			
3	Law's of illumination, sources of light,			
4	arc lamp			
5	incandescent lamp,			
6	discharge lamp, sodium vapor Lamp,			
7	mercury vapor lamp, florescent tubes,			
8	lightening schemes,			
9	method of lightning calculation.			
10	Numerical Based on method of lightning calculation.			
	C	HAPTER 2		
11	Electrical Heating: Advantages of Electrical Heating, various types of Electrical heating,			
12	do			
13	Power frequency and High frequency heating,			
14	do			
15	Degree of heating element, Equivalent circuit of arc furnace,			
16	Resistance heating			
17	do			
18	Arc heating			
19	Induction heating			
20	dielectric heating, Electric Welding: All types of electrical welding			
21	resistance welding,		•	
22	arc welding,			
23	electrical winding equipment,			
24	Comparison between AC & DC welding			
25	types of electrodes, advantages of coated electrodes.			
		HAPTER 3		
26	Electroplating: Basic principle,			
27	faraday's law of electrostatics, terms used,			
28	Application of electrolysis,			
29	factors governing electro deposition, power supply			
	Refrigeration & Air Conditioning: Basic principle,			
31	various compression cycle & system its application,			

32	do	
33	electric circuit of refrigerator	
34	air conditioner.	
35	Revision	
	CHAPTER 4	
	Traction Motors: Different system of electric traction	
27	comparison between AC & DC system, block diagram of traction system	
38	Starting-Speed control and braking- Speed control	
39	braking –Speed time curves	
40	Mechanics of Train movement-	
41	Tractive effort for acceleration – Power and energy output from driving axles	
42	do	
43	Specific energy output and consumption-Train resistance.	
44	do	
45	Revision	

	B. Tech (EEE 7th Semester): Electronic Instruments and Measurements (EEN-403N)					
Lect. No.	Topics to be Covered	Proposed Lect. Date	Remarks			
1	C.R.O.: Introduction,					
2	Cathode Ray Tube (CRT),					
3	Electron Gun, Electrostatic Focusing, Electrostatic					
	Deflection, Post Deflection					
4	Acceleration of Electron Beam, Effect of Beam Transit					
_ ¬	Time, Frequency limitation.					
_	Deflection plates, Screens of CRT's Graticule Aquadog,					
5	Applications,					
6	Storage C.R.O. Digital CRO. Design of delay lines for CRO.					
7	Amplifier Measurement: Transient response of Amplifiers,					
8	Measurements of Noise figure of Amplifier					
9	Harmonic Distortions analyzer,					

10	Distortion Meter, Measurement of op- amp parameters	
	CH	APTER 2
11	Digital Instruments: Digital Indicating instruments	
12	comparison with analog type digital display methods, theory and applications of digital voltmeters	
13	do	
	Transistor, FET and other type of voltmeters.	
	Electronic Galvanometers	
16	Q-meter.	
17	Frequency Measurements: - Measurements of frequency use cavity wave-meter.	
18	Heterodyne frequency meter,	
19	comparison of frequency using interpolation method	
20	Digital frequency meter. Frequency measurements using digital means.	
	CH	APTER 3
21	Signal Conditioning & Acquisition System: Signal conditioning	
22	A/D converter,	
23	D/A Converter	
24	Revision	
25	Use of op-amp in signal conditioning,	
26	Components of analog data acquisition System. Components	
20	of digital data acquisition system,	
27	signal conditioning, multiplex special Encoders	
28	do	
	Principles of Telemetry, Wire link channels,	
30	Ratio channels, and Microwaves Channels.	
	CHAPTER 4	
31	Instruments For Signals Generation: Pulse and square wave circuits	
32	do	
	Laboratory square wave and pulse generators	
	1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	l .

34	Function generators,	
35	Random noise generators,	
36	Frequency Synthesizer.	
37	do	
38	Bio-Medical Instruments:- ECG, EEG,	
39	EMG & Measurement of BP.	
40	Revision	

	B. Tech (EEE 7th Semester): Advance Programming (EEN-405N)					
Lect. No.	Topics to be Covered	Proposed Lect. Date	Remarks			
1	Review of Elementary Data Structures: arrays,					
2	do					
3	stacks,					
4	queues,					
5	Revision					
6	link list with respect to storage representation & acce	ess methods				
7	do					
8	do					
9	do					
10	Revision of unit 1					
		CHAPTER 2				
11	Searching Methods: Sequential					
12	do					
13	binary,					
14	do					
15	Indexes searches.					
16	do					
17	do					
18	Revision of Unit 2					
19	Class Test					
	CHAPTER 3					

20	Sorting: internal and external sorting,		
21	do		
22	Sorting Methods: bubble,		
23	insertion,		
24	selection,		
25	merge, heap		
26	radix and quick sort.		
27	do		
28	Comparison with respect to their efficiency.		
29	Revision		
	CHAPTER 4		
30	C++ Programming Language:Concept of object oriented		
50	programming		
31	Abstract Data type C classes		
32	Data encapsulation,		
33	inheritance,		
34	polymorphism,		
35	do		
36	virtual function templates implementation using C++.		
37	dodo		
38	Revision of Unit 3		
39	Class Test		
	B. Tech (EEE 7th Semester): Elective-1: HVDC Transmission		
	(EEN-415N)		
Lect.	Topics to be Covered	Proposed	Remarks
No.		Lect. Date	
1	Merits and Demerits of HVDC over EHVAC,		
2	do		
3	type of HVDC links		
4	Analysis Of 3- phase bridge converter with grid control for		
4	U □ 60□and U □60□		

5	do			
6	do			
	do			
8	derivation of equivalent circuit of HVDC link.			
9	do			
10	Revision of Unit 1			
		CHAPTER 2		
11	Basic means of control of HVDC link,			
12	C.C.A., C.C. and C.E.A, Control Characteristics of a			
	converter,			
	do			
	do			
	Harmonics in HVDC Operation,			
	characteristics harmonics,			
17	characteristic AC current harmonics			
	Non characteristics AC harmonics			
19	types of filters used for harmonic elimination,			
20	harmful effects.			
		CHAPTER 3		
_	Protection aspects of a HVDC link,			
22	do			
23	types of faults,			
24	do			
	over current protection,			
	over voltage protection,			
27	ground and short circuit fault & their protection			
28	do			
29	Revision of Unit 3			
30	Class Test			
	CHAPTER 4			
31	Parallel operation of A.C. and D.C. Systems			
32			 	
33	do		 	

_			
34	do		
35	Corona & R.I characteristics of HVDC link		
36	do		
37	do		
38	Revision of Unit 4		
39	Class Test		
	B. Tech (EEE 7th Semester) : Elective-II: Non-Conventional		
	Energy Sources (EEN-421N)		
Lect.	Topics to be Covered	Proposed	Remarks
No.		Lect. Date	
1	Introduction: Energy demand of world and country and gap		
1	analysis		
2	do		
3	Fossil fuel based systems		
4	Impact of fossil fuel based systems		
5	Non conventional energy – seasonal variations and		
	availability,		
	Renewable energy – sources and features,		
7	Hybrid energy systems.		
8	do		
9	Distributed energy systems and dispersed generation (DG).		
10	do		
	СН	APTER 2	
1.1	Colon thomas I eventome. Colon no distinct an estama		
	Solar thermal systems: Solar radiation spectrum,		
	Radiation measurement, Technologies, Applications,		
13	do		
	Heating, Cooling, Drying, Distillation		
	Power generation; Costing		
	Life cycle costing (LCC)		
17	Solar thermal system.		

10	Solar Photovoltaic systems ,Operating principle,			
18	Photovoltaic cell concepts,			
19	Cell, module, array, Series and parallel connections,			
20	Maximum power point tracking, Applications			
21	Battery charging, Pumping, Lighting, Peltier cooling			
22	Costing: Life cycle costing ,Solar PV system			
23	do			
CHAPTER 3				
24	Microhydel: Operating principle, Components of a microhydel power plant,			
25	do			
	Types and characteristics of turbines,			
	Selection and modification, Load balancing,			
	Costing: Life cycle costing -Microhydel			
	Wind; Wind patterns and wind data,			
	Site selection, Types of wind mills			
	Characteristics of wind generators,			
	Load matching,			
33	Life cycle costing - Wind system LCC			
	CHAPTER 4			
	Biomass: Learning objectives, Operating principle,			
	Combustion and fermentation, Anaerobic digester,			
36	Wood gassifier, Pyrolysis, Applications			
37	Bio gas,			
	Wood stoves, Bio diesel			
	Combustion engine			
40	Life cycle costing - Biomass system LCC			
41	Hybrid Systems, Need for Hybrid Systems, Range and type			
	of Hybrid systems,			
	Case studies of Diesel-PV,			
	Wind-PV, Microhydel-PV			
	Biomass-Diesel systems			
45	electric and hybrid electric vehicles			

46	do	